

Enabling renewable energy breakthroughs through better data.

Low-Current Diagnostic Metric for Photovoltaic Module Damage

Ryan Smith

Pordis LLC ryan.smith@pordis.com

University of Central Florida (Florida Solar Energy Center) dylan.colvin@ucf.edu

Presented at 52nd IEEE PVSC, June 13, 2024 (Seattle, WA, USA)

Dylan Colvin

Specification Sheet Publication Date

Non-visible damage is difficult to detect in the field

Shipping, Handling, and Installation

Non-Catastrophic Extreme Weather

Electroluminescence ImagingNightSpecialized equipmentExpensiveDayDayNoisyBlind under busbars		Infrared ImagingHot spotsSpecialized equipment Ohmic lossesVisibility to severe cracksBlind to minor cracks
	Ultraviolet Fluorescence Specialized equipment me-delayed response Visibility to cracks under busbars attern influences effectiveness	S
Indoor I-V Curve Tracing Specialized equipment High power requirement Laborator Module size limitations		Field I-V Curve Tracing Day only Time-intensive Disruptive to generation Susceptible to external influences
Single Point High I Measurement Sens	Priorities for improv amage Low Po itivity Require	ed diagnostic metric wer Few Impleme ment Barrier

Thermal Fluctuations

Photoluminescence Imaging

abor intensive

Specialized equipment

entation

Wide Applicability

<u>Current Density Thresholds</u> Upper: 1mA/cm² Lower: 0.01mA/cm²

PORDIS

Cell-level

Module-level

Pmax (W)		Vmn (V)		Imn (A)		Isc (A)		Voc (V)			Temperature coefficient of Current (lsc), α (%/°C)	0.05	
Models	THU		Auch		mib	uru .	100 0		100	C43	Module Eff. (%)	Temperature coefficient of Voltage (Voc), ß (%/°C)	-0,27
	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT		Temperature coefficient of Power (Pm), y (%/°C)	-0.37
WGM 200	200	000 0	10.10	27 17	0.72	7 60	10.02	0.11	10.05	11 00	10.50	NOCT (°C)	46 <u>+</u> 2
Walvi-390 390 288.2	200.2	40.10 37.47		3.73 7.09		10.00 8.11		40.00	44.33	13.30	Operating temperature range (°C)	-40 to 85	

Waaree WSM-390 Monofacial Mono PERC 72-cell I_{sc} = 10.03A $A_{MOD} = 17690.805 \text{cm}^2$ $J_{sc} = 40.821 \text{ mA/cm}^2$

High Injection: I_{sc} Low Injection: 0.1 I_{sc}

EL: Kepco / Agilent Voltage control Nikon D5100/950nm

DIV: Kepco / Agilent Voltage control

LIV: Sinton FMT-350

Current Density Equivalencies:

 1mA/cm^2 : $I_1 = I_{sc} (1 / J_{sc})$ = 245.7mA

0.01mA/cm²: $I_{0.01} = I_{sc} (0.01 / J_{sc})$ = 2.457mA

UB = 100mA *LB* = 4.41mA

Condition	EL Observation	LIV P _{MAX}		V10			V10 Measurement Power
	(delta)	(W)	(Ref %)	(V)	(Ref %)		(W)
0 Pristine	1 cracked cell (reference)	383.1	_	32.89	0.00		0.329
1 Hammer	No change	382.4	-0.18	32.78	-0.33		0.328
2 Edge Hammer	No change	382.1	-0.26	32.71	-0.54		0.327
3 Sharp Object	+7 small impact sites	381.4	-0.44	31.84	-3.19		0.318
4 Sharp Object 2	+16 small impact sites	380.6	-0.65	29.41	-10.58		0.294
5 Hammer 2	Crack growth from 3 sites	380.0	-0.81	29.69	-9.73		0.297
6 Blunt Object	No change	380.0	-0.81	29.74	-9.58		0.297
7 Excessive Impact	Crack growth from all sites	370.4	-3.32	23.63	-28.15		0.236
8 Standing	Crack growth from all sites	365.3	-4.65	23.30	-29.16		0.233
9 Walking	Crack growth from all sites	362.4	-5.40	22.20	-32.50		0.222

LIV 3% uncertainty ¹

DMM 1% uncertainty ²

[1] M. Köntges, et al., "Review of failures of photovoltaic modules," Report IEA-PVPS T13-01, pp. 1–140, 2014. [2] Keithley, "2700/2701/2750 Multimeter/Data Acquisition/Switch Systems Datasheet," 2018.

V10 shows greater sensitivity to damage than illuminated I-V

V10 measurement power is minimal

V10 response to damage introduction is instantaneous

V10 change is permanent

Slope (β_{V10}) is a function of damage level?

ΔV10 decreases as temperature increases

 $\beta_{V10_UNDAMAGED}$ = -0.510 %/°C

β_{V10_STEP9} = -0.389 %/°C

ure	ΔV10 (Undmg − Dmg) (V)
	9.460
	9.124
	7.995

* Normalized V10 is to the median of each population; same module SN between states

Damaged

Priorities

Single Point Measurement

High Damage Sensitivity

Low Power Requirement

Few Implementation Barriers

> Wide Applicability

The voltage required to inject 10mA through a module in the dark

V10

Power \downarrow as damage \uparrow

1000V String

1500V String

Fast measurement Stable measurement

Wide Applicability Sensitive to damage which affects any device equivalent circuit parameter (excluding R_s) Low power \rightarrow Portable (shipping, install) Field (string monitoring)

More work must be conducted . . . but V10 is promising.

< 10W

< 15W

Few Implementation Barriers No specialized equipment / low power

Anticipated applications

Transit

- Evaluation of transportation sector components (trucking, warehouse handling)
- Single or multi-module (pallet) reusable, rechargeable monitor
- Coupled with position (GPS), shock (accelerometer), temperature monitoring
- Precise time, location, and extent of damage introduction \rightarrow accountability

Installation & Handling

- Evaluation of handling procedures and compliance to procedures
- Junction box (blind monitoring) or plug-on device (spot check)

Field Monitoring

- String level low power, night time measurement
- Non-catastrophic extreme weather (hail, snow, wind)
- Thermal cycling

Manufacturing

- Stringing and lamination operations
- Potential combination with EL metrology

Further development requires manufacturer and procurement partners

Thank you for attending.

RELATED POSTER MODULE SPECIFICATION SHEET DATABASE J21 AREA 7: PV MODULES, MANUFACTURING, SYSTEMS AND APPLICATIONS

– Special Thanks –

Brent Thompson

Undergraduate Researcher Valencia College & Florida Solar Energy Center

Ryan Smith Pordis LLC ryan.smith@pordis.com

Dylan Colvin University of Central Florida Florida Solar Energy Center PV Module Characterization Facility dylan.colvin@ucf.edu

Further development requires manufacturer and procurement partners

